
Introduction

Are you now, or considering, using Akeneo PIM as your
Product Information Management (PIM) system for a very
large product data set? Do you have concerns about the
ability to get a large volume of data in or out of the Akeneo
PIM using its web-based REST API in a timely manner? Do
not be concerned. When configured for performance you can
update over 500 products/second and retrieve over 3,000
products/second. So Akeneo PIM can easily handle millions of
products.

This article outlines the process I used to generate a test data
set, insert it into Akeneo PIM, and then select it all from the
PIM, over-and-over again, collecting the experimental data to
determine how to configure Akeneo PIM to maximize the
performance of its REST API.

Along with the results. It took me nearly a month of data
processing to acquire this data. I hope it helps you get the
most out of your Akeneo PIM.

Hardware Setup

Akeneo PIM is a: Linux, Apache, MySQL, and PHP (LAMP)
application. In an Akeneo hosted platform as a service
(PAAS) offering like Flexibility, the host is typically an 8 CPU,
16 GB of memory, 256 GB+ of disk space machine. I’m going
to assume here, that Akeneo’s software as a service (SAAS)
offering, Serenity uses the same setup.

To fully explore the possibilities of performance I
decided to use three machines. All with the same
motherboard, type of CPU, type of memory, network
interface, and disk.

Hardware Setup

Software Setup

Generating a Random
Data Set

The Experimental Process

The Experiment's Results

The Promise of Higher
Performance

PATCHing

GETing

Vertical Scaling
Configuration Changes

Conclusion

E-Book:

Maximizing the REST API
Performance on Akeneo PIM
Community Edition

an 8 CPU, 16 GB of memory
a 16 CPU, 32 GB of memory
a 32 CPU, 64 GB of memory

Ubuntu Linux 22
Apache, the web server
Elasticsearch, the search engine
MySQL, the relational database engine
PHP FastCGI Process Manager (FPM), the
executable engine(s) for the application
Akeneo PIM Community Edition, the application

 Here are the three machine configurations:

I ran three sets of data on each machine, up to
their capabilities, that is.

Next, let’s talk software.

Software Setup

The software running on the machines consisted of:

These were all installed with their default settings.

Ubuntu installation instructions can be found here:
https://ubuntu.com/server/docs

The remaining installation instruction can be found
here:
https://docs.akeneo.com/latest/install_pim/manual/sy
stem_requirements/system_install_ubuntu_2204.html

The PIM’s PHP FPM settings are initially set to
those used by the Flexibility platform. As you
will read later, I had to start changing the
infrastructure configurations, especially when I
got to the larger machines.

Now let’s talk data.

Generating a Random Data Set

I wanted to use a typical large product data set.
But what is that? Here’s what I decided. I wrote
a new node application called node-akeneo-
perf.

Yes/No
Date
Decimal (Number)
Metric
Multi Select
Integer (Number)
Price
Simple Select
Text
Text Area, up to 2,024 bytes

attributes.vac, 70151 bytes
attributeOptions.vac, 255280 bytes
families.vac, 7928 bytes
products.vac, 9712813516 bytes

 It’s first task was to create a test dataset that
I could use repeatedly: upload, then download,
i.e., in and out.

One identifier.

I decided to randomly create 1 to 10 attributes
of each type, sans File and Image:

For the Simple and Multi Selects, 1 to 10
randomly generated attribute options.

One family.

Next, I randomly generated one million
products.

This produced 4 data sets:

During the experiment, I used these datasets
every time. Let’s talk about the experiment.

The Experimental Process

How do you increase the performance of a
LAMP application like Akeneo PIM?

The first step is by increasing the number of
fast CGI engines, in this case PHP-FPM
processes. I started with 12 + 8. That is, 12
PHP-FPM processes for the web app and 8 for
the REST API. This is typically the setup in
Akeneo Flexibility.

2

https://ubuntu.com/server/docs
https://docs.akeneo.com/latest/install_pim/manual/system_requirements/system_install_ubuntu_2204.html

3

Re-create the Akeneo PIM database: php -d memory_limit=4G bin/console pim:installer:db
--catalog vendor/akeneo/pim-enterprise-
dev/src/Akeneo/Platform/Bundle/InstallerBundle/Resources/fixtures/minimal
Create a PIM admin user: php -d memory_limit=4G bin/console pim:user:create admin
admin don@donaldbales.com Admin Admin en_US --admin -n
Cycle the MySQL database process in order to clear its buffers: sudo service mysql restart
Edit the PHP-FPM pool configuration file so the maximum number of children is 16 more
than the number of promises used in the run: sudo vi /etc/php/8.0/fpm/pool.d/www.conf,
pm.max_children = 20
Restart the PHP-FPM processes: sudo service php8.0-fpm restart
Restart Apache: sudo service apache2 restart
Log into Akeneo PIM and create a new connection. Make sure to set Role to Administrator
and Group to IT Support so the REST API will have permissions to write and read products
Copy the connection settings to file setenv
Set the AKENEO_EXPORT_PATH to the location of our test data set in file setenv
Set the AKENEO_PROMISE_LIMIT to the number of promises to be used for the test in file
setenv
Set the AKENEO_GET_LIMIT to the maximum number of products to GET in the file setenv
Import Attributes using node-akeneo_perf’s: runlocal -t importAttributes
Import Attribute Options using node-akeneo_perf’s: runlocal -t importAttributeOptions
Import Families using node-akeneo_perf’s: runlocal -t importFamilies
Import Products using node-akeneo_perf’s: runlocal -t importProducts, logging the output
for later data collection
Set the AKENEO_EXPORT_PATH to another location other than our test data set in file
setenv
Export Products using node-akeneo_perf’s: runlocal -t exportProducts, logging the output
for later data collection

Once I reached the 8 process limit used by 8 nearly simultaneous REST API calls which
consumed all 8 processes, I changed the configuration strategy to 16 + the number of nearly
simultaneous calls to the REST API. For example, for 32 nearly simultaneous REST API calls,
16 + 32, so a total of 48 PHP-FPM processes. I made this adjustment for every run of the
experiment.

After the random data sets were created, the experiment consisted of the following steps:

1.

2.

3.
4.

5.
6.
7.

8.
9.

10.

11.
12.
13.
14.
15.

16.

17.

Repeat the steps for each desired number of promises.

4

The steps outline a process of starting with a new empty PIM, with a single user: admin. Then
we flush the database cache by restarting the database server. We create a new connection to
be used by program node-akeneo-perf to exercise the REST API by creating a randomly
generated catalog with randomly generated product data for 1,000,000 products. Then we turn
around, and get the data back out, all the time collecting how long it takes, to calculate a
products/second rate for REST API PATCHes and GETs.

The Experiment’s Results
Here's the data:

I combined the results for all three machines in one table for calling the REST API to PATCH
products and calling the REST API to GET products. I combined them because up to the point of
each machine’s processing capacity, the results were the same.

The two heavy horizontal lines note when I had to break up the possible starting prefix for SKUs
from 10 to 100 queries. The shaded line is a run on the host machine instead of over a 1GB
network connection.

5

What does the data mean?

I interpret the results in the rate of products/second (p/s).

An 8 CPU/16 GB machine was optimally configured with 64 PHP-FPM processes with 48
configured statically for the REST API: it could patch 514 p/s, get 2,883 p/s.

A 16 CPU/32 GB machine was optimally configured with 112 PHP-FPM processes with 96
configured statically for the REST API: it could patch 540 p/s, get 3,079 p/s.

A 32 CPU/64 GB machine was optimally configured with 176 PHP-FPM processes with 160
configured statically for the REST API: it could patch 596 p/s, get 3,523 p/s.
Why not 192? because it becomes i/o bound.

If the node-akeneo-perf ran directly on the host, using localhost as the connection,
PATCHes got 7% faster, while GETs 27% faster.

The Promise of Higher Performance

This experimental environment was an ideal setting. A 1GB dedicated network for the
connection between the client machine running node-akeneo-perf, and the Akeneo PIM host.
Accordingly, the biggest culprit of poor REST API performance, the network, was minimized.

In our ideal setting, Akeneo PIM’s rest API was able to PATCH 65 products/second with one
connection. And, in turn, GET 466 products/second. In the 40+ years I’ve worked in this industry,
those are better than average numbers.

But are they good enough when you have a large data set? Is it within your business’
constraints to wait for 4 1/2 hours to update data in your PIM if you have one million products?

How about getting data out? Is it acceptable to take 30 – 40 minutes the get the data out, every
time you send it down stream?

I often here, “it’s OK, because we only send delta updates to the PIM.” Over time, the data
source that is sending deltas will become out-of-sync with the PIM due to network and other
errors. It that OK? Probably not. To fix that, you’ll need to perform a reconciliation or full update.
To do that you’ll need to get all the data out, and/or all the data back in. So, speed matters.

How do we get more data in or out in the same time frame? By PATCHing or GETting more calls
against the same endpoints on the REST API at the same time.

The easiest way to do that is to use promises in JavaScript Node. So that is what I’ve done here.

Next, let’s look at inserting the data into the PIM.

6

PATCHing

I used the HTTP PATCH endpoint: /api/rest/v1/products, to create the products in Akeneo PIM.
As you can see in the following PATCH data, the three machines each had a configuration that
was optimal for the number of products that could be created per second; they are highlighted
in red.

8 CPU/16 GB machine: 48 promises (64 PHP-FPM processes)

16 CPU/32 GB machine: 96 promises (112 PHP-FPM processes)

32 CPU/64 GB machine: 160 promises (176 PHP-FPM processes)

7

Let’s look at the data graphically:

Here the number of promises (nearly simultaneous) REST API calls is the vertical axis, and the
throughput rate in products per second, is the horizontal axis. It’s easy to see that 48 PHP-FPM
processes dedicated to the REST API is an optimal setting on an 8 CPU/16 GB memory machine.

Now let’s look at getting the data out.

8

GETting

I used the HTTP GET endpoint: /api/rest/v1/products, to retrieve all the products out of Akeneo
PIM. As you can see in the following GET data, the three machines each had a configuration
that was optimal for the number of products that could be created per second; they are
highlighted in red.

Breaking the GET into multiple GETs is no trivial process. In my case, I generated SKUs from
10100000 to 10999999. Accordingly, to perform multiple GETs I had to use 10 prefixes,
starting with 100, 101, 102, 103 … 109, combined with a STARTS WITH query string:

api/rest/v1/products?pagination_type=search_after&search={\"sku\":[{\"operator\":\"STARTS
WITH\",\"value\":\"100\"}]}

That allowed me to use 2 – 10 promises.

Next, I had to use 100 prefixes, start with 1000, 1001, 1002 … 1099, combined with a STARTS
WITH query string:

/api/rest/v1/products?pagination_type=search_after&search={\"sku\":[{\"operator\":\"STARTS
WITH\",\"value\":\"1000\"}]}

That allowed me to use 16 – 100 promises. The next breakdown would be one thousand, so I
did not do that. Instead, the data for 112 to 192 promises is just 100 REST API calls.

It has been my experience that product SKUs typically contain the digits 0 – 9 and characters
A – Z.I even encourage my clients to set a regular expression validation defined as:

/[0-9A-Z]+$/

To ensure that is the case. Then I break the GETs into 36 API calls.

9

8 CPU/16 GB machine: 48 promises (64 PHP-FPM processes)

16 CPU/32 GB machine: 96 promises (112 PHP-FPM processes)

32 CPU/64 GB machine: 112 promises (128 PHP-FPM processes)

10

Let’s look at the data graphically:

Here the number of promises (nearly simultaneous) REST API calls is the vertical axis, and the

throughput rate in products per second, is the horizontal axis. It’s easy to see that 48 PHP-FPM

processes dedicated to the REST API is an optimal setting on an 8 CPU/16 GB memory machine.

It also shows that there are limits to how much performance you can gain through vertical

scaling, that is, adding more CPUs and Memory to a single machine. The 32 CPU/64 GB

machines became I/O bound, due to the fact that MySQL and Elasticsearch reside on the same

machine. Through other testing, I’ve found you can get higher throughput by exploding the

architecture into two or three machines.

With three machines, the web portion Apache + PHP-FPM engine reside on one host, Elastic

search on another, and MySQL on the third. These three machines configured as 8 CPU/16 GB

machines provide higher throughput that one 32 CPU/64 GB machine. Accordingly, if you need

more throughput than you can get out of one 8 CPU/16 GB machine, I suggest you scale

horizontally.

11

Vertical Scaling Configuration Changes

Earlier, I alluded to the fact that I had to start changing the default configurations to work with

more CPUs and Memory, which meant more connections.

Apache

sudo vi /etc/apache2/apache2.conf

Timeout 600

sudo vi /etc/apache2/mods-available/mpm_event.conf

<IfModule mpm_event_module>

 StartServers 4

 MinSpareThreads 25

 MaxSpareThreads 75

 ThreadLimit 64

 ThreadsPerChild 25

 MaxRequestWorkers 600

 MaxConnectionsPerChild 0

</IfModule>

MySQL

sudo vi /etc/mysql/mysql.conf.d/mysqld.cnf

innodb_buffer_pool_size = 4G

innodb_buffer_pool_instances = 8

key_buffer_size = 128M

max_connections = 256

PHP-FPM

sudo vi /etc/php/8.0/fpm/pool.d/www.conf

pm = static
pm.max_children = <various>

This example program is open-source and
available at:

https://github.com/donaldbales/node-
akeneo-perf

Conclusion

Yes, you can get a lot more throughput from
Akeneo PIM outside its common configuration.

Again, an 8 CPU/16 GB machine was optimally
configured with 64 PHP-FPM processes with 48
configured statically for the REST API: it could patch
514 p/s, get 2,883 p/s.

Akeneo PIM is a great Product Information
Management (PIM) application and can easily
handle well over 1,000,000 products. And its web-
based REST API can be configured to handle your
most demanding needs.

You can create or update 1,000,000 products in
roughly 30 minutes.

You can retrieve 1,000,000 products in roughly 6
minutes.

That’s fast.

Do these settings apply to the Enterprise Edition
too? Yes.

Now go forth, and multiply, Akeneo PIMs, that is.

www.sitation.com

Using Akeneo PIM Enterprise Edition
as a Vendor Portal
Syncing Data Between Two Akeneo
Community Edition PIMs

Beginning Oracle PL/SQL (second
edition)
 Beginning PL/SQL from Novice to
Professional
Java Programming With Oracle JDBC
JDBC Pocket Reference
Oracle Application Server 10g

An Information/Systems Architect,
Business/Systems Analyst, Software
Designer/Developer, and Author, Don
Bales is fluent in both business and
technology speak, performing the
analysis, design, and programming of
business solutions.

With over thirty five years of experience
solving business problems using
technology and ample experience in
Akeneo PIM installation, implementation,
and integration, Bales shares his
acquired knowledge through thought
leadership publications and consulting.
Additionally, Bales is the author of
several books on Oracle and
Java.

Recent E:Books by Don Bales:

Other Works by Don Bales:

Don Bales
Solution Architect, Sitation

https://github.com/donaldbales/node-akeneo-perf
http://www.sitation.com/
https://www.sitation.com/akeneo-pim-enterprise-as-a-vendor-portal/
https://www.sitation.com/syncing-data-between-akeneo-community-editions/
http://www.donaldbales.com/don/Books.html
http://www.donaldbales.com/don/Books.html

